Maintaining Related EDDs

Copyright ©2000 Tassos Anastasiou and Text Structure Consulting, Inc.

Maintaining Related EDDs

by Tassos Anastasiou and Lynne A. Price, Ph.D.

Tassos Anastasiou is an independent consultant speciaizing in Frame Developer’s Kit
(FDK) applications. He is aformer employee of Frame Technology Corporation.

Lynne Priceis president of Text Structure Consulting, Inc., a consulting company that
specializesin FrameMaker+SGML application development and training. Prior to
founding Text Structure Consulting in 1996, L ynne was a software engineer at Adobe,
which she joined through Frame Technology as one of the original developers on the
project that eventually became FrameMaker+SGML . Lynne has been active in the SGML
community since 1985. She participatesin both US and international SGML standards
committees. Lynne's interest in structured documentation began in graduate school. She
completed aPh.D. in Computer Sciences at the University of Wisconsin-Madison in 1978.
Her dissertation was titled Representing Text Structure for Automatic Processing.

2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Problem statement

Problem statement

Hewl ett-Packard uses FrameMaker+SGML to prepare user documentation and
training materials. The FrameMaker+SGML application is based on the DocBook
3.0 DTD. Printed user documentation can be prepared in any of 5 different page
layouts: thereis an indented style that uses side heads and a full-page, non-
indented style, both availablein each of two page sizes as well as an additional
style for reference materia typica of unix man pages. Material displayed online
and training material provide additional variations of the basic book design. While
printed and online documentation all use the same element structure, training
material uses afew elements and attributes that are not permitted in user
documentation.

The EDD for this application is close to 200 pageslong. It is not practical to
maintain a separate EDD for each variation. To reduce the amount of editing and
bookkeeping needed to maintain various templates, and to ensure that a change that
appliesto all styles need be specified only once, Hewlett-Packard maintains a
single EDD. This paper describes, with examples, how the necessary variability is
supported in this singlefile. The methods used are applicable to other collections
of related EDDs.

In brief, three techniques are used:

O User variables define repeated strings that may change in different styles.
The variable definitions are maintained in simple style-dependent variable
definition files and imported into the EDD as hecessary asone step in
preparing a style-specific version of the EDD. For example, one file defines
variables used in al templates in the larger page sizes, and another defines
variables used for smaller page sizes. Similarly, one defines variables used in
indented styles and another in non-indented styles. For the large, indented
style, variable definitions are imported from the file with definitions for large
pages and from the file with definitions for indented styles. Rather than
requiring the EDD developer to import all the variable definitions used for
each style, Hewlett-Packard performs this processing with an FDK plug-in.

[0 Since variables cannot contain structured material, conditional text is used
for structured segments of the EDD that are needed in some styles but not
others. The correspondence of condition tags to stylesis not one-to-one; as
with the variable definition files, there are condition tags for groups of related
styles. For example, there are condition tags for training, for all
documentation styles, for indented styles, and so on.

[0 Text insets are used for fragments of the EDD that appear multiple times. for
example, since the same formatting is used for cautions and notes, the
specifications are made in atext inset that isincluded in the definitions of
both the caution and the note element. Use of text insets in an EDD requires
some planning so that FrameMaker+SGML will be able to process the
element definitions the EDD contains. Lynne Price described an approach
using SGML text insetsin “Using FrameMaker+SGML to Build
FrameMaker+SGML Applications” at the 1999 FrameUsers Conference.
Hewlett-Packard has chosen instead to use FrameMaker text insets. This
alternative avoids the need of maintaining parallel SGML And
FrameMaker+SGML versions of each reusable fragment. However, it does

2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Variables

require minor changes to the metatempl ate (the template used for EDDs) and
an FDK plug-in to preprocess the EDD beforeits element definitions can be
imported into a document. This paper includes complete descriptions of the
metatempl ate changes and the functionality of thisnew FDK plug-in.

These techniques address two goals: they alow style-specific information to be
switched in and out and they support reusable fragments within the EDD. Reusable
fragments provide asingle definition that can be edited once to change multiple
occurrences of afragment throughout the EDD and also eliminate the possibility of
typing errorsthat occur in rekeying. Variables support both the use of style-specific
information and provide reusable fragments, conditional text is style-specific but
does not by itself provide reusability, and text insets are reusable but not style-
specific (unless they contain conditional text or variables).

Variables

The master EDD uses variables for property values such as dimensions and font
family namesthat are specified as simple strings and for variable parts of genera
rules. For example, the element type called Chapt er in user documentation is
changed to Topi ¢ for training while Par t is changed to Modul e. An example of
how this variability appears in the master EDD is shown in Figure 1, which shows
the user-documentation form of a general rule. Strikethrough text indicates
variables:

General rule: FrontCover?, Title?, BookIinfo?, ToC?, LoT*, (Glossary | Preface)*,
(((Shapter)+, Reference*) | Part+ | Referencet), (Appendix)*,
(Glossary)*, (Index)*, LoT*, ToC?, BackCover?

Figure 1 Using variablesin the master EDD

Within the EDD, acharacter format called var i abl e turns on the strikethrough
character property. All variables are defined to use this format. There is avariable
called chapt er, for instance, that for user documentation is defined to be:

<vari abl e>Chapt er

but for training is defined to be:

<vari abl e>Topi c

Since FrameMaker+SGML ignores formatting when it imports el ement definitions
from an EDD, neither use of variables nor the character format change affects the
way the EDD is processed. However, EDD developers find the visual clue that a
variableis present helpful when they edit material such as the general rule shown
above.

2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Conditional text

Variable definitions are maintained in separate files with the extension . var . The
body page of each . var filelists the variables defined in its variable catalog. For
easy reference, the entries are listed al phabetically. For example, Figure 2 shows
entriesintrai ni ng. var:

Thisfile defines variables used to specify the element tags for training. In particular:
e Admonitionlndent is +:325".

* AutonumFormat is AuteNumSmmalt.

* Chapter isFopie.

» ChapterTitleTab is36.

* FigureTitlelndent is 96.

* ListMarkindent is 6:25".

o PartisModdte.

* Partintro is Hatreduction.

Figure 2 A variable definition file

Of course, the text in a variable definition document is entirely comments for the
benefit of the developer. The document’s functionality is contained entirely in its
variable catalog. Preparing a particular variation of the EDD may involve
importing variable definitions from severa files. The small, indented style of user
documentation, for instance, needs variables fromsmal | . var, i ndent ed. var, and
docunent ati on. var.

Conditiona text

Since variables cannot contain elements, they cannot handle all the variations that
may be needed in related EDDs. Conditional text provides additional flexibility.
The master EDD uses different condition tags for material that is specificto a
single EDD variation or to agroup of related variations. Thereisa condition for all
small templates, for instance, and one for training material. Asshownin Figure 3,
conditional text can be used to indicate that part of astring pertains to only some
conditions. Here, for instance, the general ruleindicatesthat Part I ntro is
permitted in user documentation but not training material. (While the examples
shown in this paper do not use color, the actual EDD uses color in condition
indicators to help the devel oper visualize the variants relevant to any part of the
EDD.)

General rule: (Doclnfo?, Title), Partintro?, (RefEntry)+

Figure 3 A conditional string

2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Text insets

Conditional text is also used for elements that may appear in some variant EDDs
but not others. Figure 4 shows an attribute definition list in which the first attribute
typeis defined for al variations of the EDD, but the last two are conditional .

Attributelist

1. Name Id UniquelID
Optional

2. Name PageBreak Choaice
Optional
Choices: PageBreak, NoPageBreak
Default: PageBreak

3. Name ViewTopicTitle Choaice
Optional
Choices: Display, Hide
Default: Display

Figure 4 Complex conditional structures

Conditional element hierarchies can contain variables. Figure 5 shows
specification of paragraph indent properties. In fullpage styles (indicated by
overlined text), the first indent is set to 0, while in indented styles (indicated by
grayed text) the left indent is moved by avariable amount.

Indents
First indent: O pt

Figure 5 Combining conditional text with variables

When editing structured conditional documents such as the master EDD,
developers have learned to be careful when sel ecting elements for assignment of
condition tags. If acondition tag is assigned to a paragraph element but not the
following end-of-paragraph character, hiding the condition can leave a stray end-
of-paragraph that may cause the result to be an invalid document. Also, editing
with all conditions showing prevents many editing mistakes.

Text insets

Variables provide two advantages in the master EDD. In addition to customizing
the EDD through changing variable definitions, variables are reusable—changing a
definition affects all occurrences of the variablein the EDD. Conditional text
provides customizability without reusability. A third techniqueis needed for
reusability of element structures. Text insets are one possibility. The master EDD
uses text insets to its own reference pages for reusable elements or groups of
elements.

Some changes to the meta-EDD (the EDD for EDDSs) are necessary to support this
ability. First, each text inset must be a well-formed hierarchy with asingle highest-
level element. So that text insets can be used for sequences of parallel elements
(more than one but not al the rules within an element’ s text format rules, say, or

2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Text insets

severa adjacent attributes definitions but not an entire attribute definition list), a
new element called Text | nset was defined. Text | nset isacontainer defined in
the meta-EDD with ageneral rule of <ANY>. It isvalid at the highest-level and thus
in avalid master EDD can be used as the highest-level element of text insets.
Figure 6 shows the structure of such atext inset. Here, theintent is that the
Properti esFont and Properti esNunberi ng can be used as often as needed as all
or part of the content of Par agr aphPr operti es elementsin the EDD.

- [Textinget]

+|PropertiesFaont II
PropertiesMumbering II

Figure 6 The structure of atext inset

However, atext inset to this Text | nset element inserts the Text | nset element as
well asitschildren. Therefore, the metatemplate was modified to allow Text | nset
elements to occur anywhere by defining Text | nset to be an inclusion on the
EDD’s own highest-level element, EI ement Cat al og. Permitting Text I nset
anywhere causes two additional problems. The content of aText | nset may be
intended for required content of its parent. For example, aText | nset that consists
of aGener al Rul e will beimported at apoint where aGener al Rul e isrequired and
will substitute for that required Gener al Rul e. Thus, the metatemplate must allow
the Text | nset to substitute for the Gener al Rul e. In addition to allowing

Text I nset elements anywhere, the text-inset metatemplate makes all el ements
optional, even those that are required in the original metatempl ate.

The other problem with use of the Text | nset element is that the Import Element
Definitions command cannot process an EDD that contains Text | nset elements.

Thus, before any of the variant EDDs are imported into a document, the Text | nset
elements must be unwrapped.

Incidentally, the format rule for the Text I nset elements uses a distinct character
format so that the developer can recognize them as he reads the EDD.

An additional change to the meta-EDD was made for the convenience of the
developer. While the original FrameM aker+SGML metatemplate allows a

Comment s element to appear at the beginning or end of each element definition, it
does not alow other comment s elements. Complicated element definitions can
extend for many pages and involve numerous format rules and subrules. It is very
helpful for the reader of an EDD to see comments explaining such components of a
single element definition. Since this project required its own metatempl ate, an
additional change wasto allow Comment s throughout an element definition. Just as
the Text | nset element must be unwrapped before the element definitions in the
EDD can be imported into atemplate, so the additional comments elements must
be deleted.

2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Processing the conditional EDD

Processing the conditional EDD
The different EDD variants could be extracted manually from the master EDD by
importing appropriate variable definition files, showing and hiding relevant
conditions, unwrapping all Text I nset elements, and deleting all Coment s
elements through a globa Find/Change command. Each variant could then be
manually imported into the associated templates. However, such manual
processing is not only tedious, but potentially error-prone unless the user keeps
careful notes on which of the various steps have been performed. It is much easier
to use an FDK client to perform all of these steps. The client developed for this
project takes as input the master EDD and atablethat specifies how to processit.

Such atable is shown bd ow

Style Variable Condition Tags Templates
Definitions
Bi gFul | Bi g. var Ful | BgFl Chap. fm
Ful | . var BgFl G oss. fm
Bi gl ndent ed Bi g. var | ndent ed Bgl nChap. fm
| ndent ed. var Bgl nG oss. fm
Smal | Ful | Smal | . var Ful | SnFl Chap. fm
Ful | . var SnFl G oss. fm
Rel easeNot e. fm
Smal | | ndented | Smal | . var | ndent ed Sml nChap. fm
I ndent ed. var Sm nd oss. fm
Tr ai ni ng Tr ai ni ng. var Ful | TrngMan. fm
Bi g. var Tr ai ni ng

The FDK client unwraps the Text I nset elements in the master EDD and deletes
all comrent s elements (those that would be valid under the original metatempl ate
as well as those that would not). For each row of the table, it performs the
following steps:

O Imports variable definitions from the files listed in the second column.
O Shows conditions listed in the third column and hides all other conditions.

O Imports element definitions from the original metatemplate and validates the
document to ensure that use of the Text | nset e ement did not obscure
invalid structures.

[0 Savesthe result under the name specified in the first column, appending the
. edd extension. (Thus, the variant EDDs from this example would be called
Bi gFul | . edd. Bi gl ndent ed. edd, and so on.) While saving these
intermediate files is not necessary, their presence enables the devel oper to
debug and test each variation separately

O Imports the saved EDD into all templates listed in the last column.

2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Conclusions

Conclusions

The work described in this paper is an example of thekind of tool that can be
developed by treating an EDD as a structured FrameM aker+SGML document and
using some of FrameMaker’s featuresto processit. The effort is closeto complete.
The FDK clients have been written and amaster EDD created. While the EDD has
not been fully tested, indications are that thisis an effective tool. Each developer
who edits the EDD must fully understand all three of the techniques described
above. This training enables maintenance of a much more consistent and
manageabl e set of variations than would be possible with separate EDDs.

2000 FrameUsers Conference—San Diego, California

	RelatedEDD
	Maintaining Related EDDs

	RelatedEDD.pdf
	Maintaining Related EDDs
	Problem statement
	Variables
	Conditional text
	Text insets
	Processing the conditional EDD
	Conclusions

