
Maintaining Related EDDs

Copyright ©2000 Tassos Anastasiou and Text Structure Consulting, Inc.

1

Maintaining Related EDDs

by Tassos Anastasiou and Lynne A. Price, Ph.D.

Tassos Anastasiou is an independent consultant specializing in Frame Developer’s Kit
(FDK) applications. He is a former employee of Frame Technology Corporation.

Lynne Price is president of Text Structure Consulting, Inc., a consulting company that
specializes in FrameMaker+SGML application development and training. Prior to
founding Text Structure Consulting in 1996, Lynne was a software engineer at Adobe,
which she joined through Frame Technology as one of the original developers on the
project that eventually became FrameMaker+SGML. Lynne has been active in the SGML
community since 1985. She participates in both US and international SGML standards
committees. Lynne's interest in structured documentation began in graduate school. She
completed a Ph.D. in Computer Sciences at the University of Wisconsin-Madison in 1978.
Her dissertation was titled Representing Text Structure for Automatic Processing.
2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Problem statement2
Problem statement
Hewlett-Packard uses FrameMaker+SGML to prepare user documentation and
training materials. The FrameMaker+SGML application is based on the DocBook
3.0 DTD. Printed user documentation can be prepared in any of 5 different page
layouts: there is an indented style that uses side heads and a full-page, non-
indented style, both available in each of two page sizes as well as an additional
style for reference material typical of unix man pages. Material displayed online
and training material provide additional variations of the basic book design. While
printed and online documentation all use the same element structure, training
material uses a few elements and attributes that are not permitted in user
documentation.

The EDD for this application is close to 200 pages long. It is not practical to
maintain a separate EDD for each variation. To reduce the amount of editing and
bookkeeping needed to maintain various templates, and to ensure that a change that
applies to all styles need be specified only once, Hewlett-Packard maintains a
single EDD. This paper describes, with examples, how the necessary variability is
supported in this single file. The methods used are applicable to other collections
of related EDDs.

In brief, three techniques are used:

➢ User variables define repeated strings that may change in different styles.
The variable definitions are maintained in simple style-dependent variable
definition files and imported into the EDD as necessary as one step in
preparing a style-specific version of the EDD. For example, one file defines
variables used in all templates in the larger page sizes, and another defines
variables used for smaller page sizes. Similarly, one defines variables used in
indented styles and another in non-indented styles. For the large, indented
style, variable definitions are imported from the file with definitions for large
pages and from the file with definitions for indented styles. Rather than
requiring the EDD developer to import all the variable definitions used for
each style, Hewlett-Packard performs this processing with an FDK plug-in.

➢ Since variables cannot contain structured material, conditional text is used
for structured segments of the EDD that are needed in some styles but not
others. The correspondence of condition tags to styles is not one-to-one; as
with the variable definition files, there are condition tags for groups of related
styles. For example, there are condition tags for training, for all
documentation styles, for indented styles, and so on.

➢ Text insets are used for fragments of the EDD that appear multiple times. for
example, since the same formatting is used for cautions and notes, the
specifications are made in a text inset that is included in the definitions of
both the caution and the note element. Use of text insets in an EDD requires
some planning so that FrameMaker+SGML will be able to process the
element definitions the EDD contains. Lynne Price described an approach
using SGML text insets in “Using FrameMaker+SGML to Build
FrameMaker+SGML Applications” at the 1999 FrameUsers Conference.
Hewlett-Packard has chosen instead to use FrameMaker text insets. This
alternative avoids the need of maintaining parallel SGML And
FrameMaker+SGML versions of each reusable fragment. However, it does
2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Variables 3
require minor changes to the metatemplate (the template used for EDDs) and
an FDK plug-in to preprocess the EDD before its element definitions can be
imported into a document. This paper includes complete descriptions of the
metatemplate changes and the functionality of this new FDK plug-in.

These techniques address two goals: they allow style-specific information to be
switched in and out and they support reusable fragments within the EDD. Reusable
fragments provide a single definition that can be edited once to change multiple
occurrences of a fragment throughout the EDD and also eliminate the possibility of
typing errors that occur in rekeying. Variables support both the use of style-specific
information and provide reusable fragments, conditional text is style-specific but
does not by itself provide reusability, and text insets are reusable but not style-
specific (unless they contain conditional text or variables).

Variables
The master EDD uses variables for property values such as dimensions and font
family names that are specified as simple strings and for variable parts of general
rules. For example, the element type called Chapter in user documentation is
changed to Topic for training while Part is changed to Module. An example of
how this variability appears in the master EDD is shown in Figure 1, which shows
the user-documentation form of a general rule. Strikethrough text indicates
variables:

Within the EDD, a character format called variable turns on the strikethrough
character property. All variables are defined to use this format. There is a variable
called Chapter, for instance, that for user documentation is defined to be:

<variable>Chapter

but for training is defined to be:

<variable>Topic

Since FrameMaker+SGML ignores formatting when it imports element definitions
from an EDD, neither use of variables nor the character format change affects the
way the EDD is processed. However, EDD developers find the visual clue that a
variable is present helpful when they edit material such as the general rule shown
above.

Figure 1 Using variables in the master EDD

General rule: FrontCover?, Title?, BookInfo?, ToC?, LoT*, (Glossary | Preface)*,
(((Chapter)+, Reference*) | Part+ | Reference+), (Appendix)*,
(Glossary)*, (Index)*, LoT*, ToC?, BackCover?
2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Conditional text4
Variable definitions are maintained in separate files with the extension .var. The
body page of each .var file lists the variables defined in its variable catalog. For
easy reference, the entries are listed alphabetically. For example, Figure 2 shows
entries in training.var:

Of course, the text in a variable definition document is entirely comments for the
benefit of the developer. The document’s functionality is contained entirely in its
variable catalog. Preparing a particular variation of the EDD may involve
importing variable definitions from several files. The small, indented style of user
documentation, for instance, needs variables from small.var, indented.var, and
documentation.var.

Conditional text
Since variables cannot contain elements, they cannot handle all the variations that
may be needed in related EDDs. Conditional text provides additional flexibility.
The master EDD uses different condition tags for material that is specific to a
single EDD variation or to a group of related variations. There is a condition for all
small templates, for instance, and one for training material. As shown in Figure 3,
conditional text can be used to indicate that part of a string pertains to only some
conditions. Here, for instance, the general rule indicates that PartIntro is
permitted in user documentation but not training material. (While the examples
shown in this paper do not use color, the actual EDD uses color in condition
indicators to help the developer visualize the variants relevant to any part of the
EDD.)

Figure 2 A variable definition file

This file defines variables used to specify the element tags for training. In particular:

• AdmonitionIndent is 1.125".

• AutonumFormat is AutoNumSmall.

• Chapter is Topic.

• ChapterTitleTab is 36.

• FigureTitleIndent is 90.

• ListMarkIndent is 0.25".

• Part is Module.

• PartIntro is Introduction.

Figure 3 A conditional string

General rule: (DocInfo?, Title), PartIntro?, (RefEntry)+
2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Text insets 5
Conditional text is also used for elements that may appear in some variant EDDs
but not others. Figure 4 shows an attribute definition list in which the first attribute
type is defined for all variations of the EDD, but the last two are conditional.

Conditional element hierarchies can contain variables. Figure 5 shows
specification of paragraph indent properties. In fullpage styles (indicated by
overlined text), the first indent is set to 0, while in indented styles (indicated by
grayed text) the left indent is moved by a variable amount.

When editing structured conditional documents such as the master EDD,
developers have learned to be careful when selecting elements for assignment of
condition tags. If a condition tag is assigned to a paragraph element but not the
following end-of-paragraph character, hiding the condition can leave a stray end-
of-paragraph that may cause the result to be an invalid document. Also, editing
with all conditions showing prevents many editing mistakes.

Text insets
Variables provide two advantages in the master EDD. In addition to customizing
the EDD through changing variable definitions, variables are reusable—changing a
definition affects all occurrences of the variable in the EDD. Conditional text
provides customizability without reusability. A third technique is needed for
reusability of element structures. Text insets are one possibility. The master EDD
uses text insets to its own reference pages for reusable elements or groups of
elements.

Some changes to the meta-EDD (the EDD for EDDs) are necessary to support this
ability. First, each text inset must be a well-formed hierarchy with a single highest-
level element. So that text insets can be used for sequences of parallel elements
(more than one but not all the rules within an element’s text format rules, say, or

Figure 4 Complex conditional structures

Figure 5 Combining conditional text with variables

Attribute list
1. Name: Id Unique ID

Optional
2. Name: PageBreak Choice

Optional
Choices: PageBreak, NoPageBreak
Default: PageBreak

3. Name: ViewTopicTitle Choice
Optional
Choices: Display, Hide
Default: Display

Indents
First indent: 0 pt
Move left indent by: 66 pt
2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Text insets6
several adjacent attributes definitions but not an entire attribute definition list), a
new element called TextInset was defined. TextInset is a container defined in
the meta-EDD with a general rule of <ANY>. It is valid at the highest-level and thus
in a valid master EDD can be used as the highest-level element of text insets.
Figure 6 shows the structure of such a text inset. Here, the intent is that the
PropertiesFont and PropertiesNumbering can be used as often as needed as all
or part of the content of ParagraphProperties elements in the EDD.

However, a text inset to this TextInset element inserts the TextInset element as
well as its children. Therefore, the metatemplate was modified to allow TextInset
elements to occur anywhere by defining TextInset to be an inclusion on the
EDD’s own highest-level element, ElementCatalog. Permitting TextInset
anywhere causes two additional problems. The content of a TextInset may be
intended for required content of its parent. For example, a TextInset that consists
of a GeneralRule will be imported at a point where a GeneralRule is required and
will substitute for that required GeneralRule. Thus, the metatemplate must allow
the TextInset to substitute for the GeneralRule. In addition to allowing
TextInset elements anywhere, the text-inset metatemplate makes all elements
optional, even those that are required in the original metatemplate.

The other problem with use of the TextInset element is that the Import Element
Definitions command cannot process an EDD that contains TextInset elements.
Thus, before any of the variant EDDs are imported into a document, the TextInset
elements must be unwrapped.

Incidentally, the format rule for the TextInset elements uses a distinct character
format so that the developer can recognize them as he reads the EDD.

An additional change to the meta-EDD was made for the convenience of the
developer. While the original FrameMaker+SGML metatemplate allows a
Comments element to appear at the beginning or end of each element definition, it
does not allow other Comments elements. Complicated element definitions can
extend for many pages and involve numerous format rules and subrules. It is very
helpful for the reader of an EDD to see comments explaining such components of a
single element definition. Since this project required its own metatemplate, an
additional change was to allow Comments throughout an element definition. Just as
the TextInset element must be unwrapped before the element definitions in the
EDD can be imported into a template, so the additional comments elements must
be deleted.

Figure 6 The structure of a text inset
2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Processing the conditional EDD 7
Processing the conditional EDD
The different EDD variants could be extracted manually from the master EDD by
importing appropriate variable definition files, showing and hiding relevant
conditions, unwrapping all TextInset elements, and deleting all Comments
elements through a global Find/Change command. Each variant could then be
manually imported into the associated templates. However, such manual
processing is not only tedious, but potentially error-prone unless the user keeps
careful notes on which of the various steps have been performed. It is much easier
to use an FDK client to perform all of these steps. The client developed for this
project takes as input the master EDD and a table that specifies how to process it.
Such a table is shown below

The FDK client unwraps the TextInset elements in the master EDD and deletes
all Comments elements (those that would be valid under the original metatemplate
as well as those that would not). For each row of the table, it performs the
following steps:

➢ Imports variable definitions from the files listed in the second column.

➢ Shows conditions listed in the third column and hides all other conditions.

➢ Imports element definitions from the original metatemplate and validates the
document to ensure that use of the TextInset element did not obscure
invalid structures.

➢ Saves the result under the name specified in the first column, appending the
.edd extension. (Thus, the variant EDDs from this example would be called
BigFull.edd. BigIndented.edd, and so on.) While saving these
intermediate files is not necessary, their presence enables the developer to
debug and test each variation separately

➢ Imports the saved EDD into all templates listed in the last column.

Style Variable
Definitions

Condition Tags Templates

BigFull Big.var
Full.var

Full BgFlChap.fm
BgFlGloss.fm

BigIndented Big.var
Indented.var

Indented BgInChap.fm
BgInGloss.fm

SmallFull Small.var
Full.var

Full SmFlChap.fm
SmFlGloss.fm
ReleaseNote.fm

SmallIndented Small.var
Indented.var

Indented SmInChap.fm
SmInGloss.fm

Training Training.var
Big.var

Full
Training

TrngMan.fm
2000 FrameUsers Conference—San Diego, California

Maintaining Related EDDs
Conclusions8
Conclusions
The work described in this paper is an example of the kind of tool that can be
developed by treating an EDD as a structured FrameMaker+SGML document and
using some of FrameMaker’s features to process it. The effort is close to complete.
The FDK clients have been written and a master EDD created. While the EDD has
not been fully tested, indications are that this is an effective tool. Each developer
who edits the EDD must fully understand all three of the techniques described
above. This training enables maintenance of a much more consistent and
manageable set of variations than would be possible with separate EDDs.
2000 FrameUsers Conference—San Diego, California

	RelatedEDD
	Maintaining Related EDDs

	RelatedEDD.pdf
	Maintaining Related EDDs
	Problem statement
	Variables
	Conditional text
	Text insets
	Processing the conditional EDD
	Conclusions

